If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81r^2-3=0
a = 81; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·81·(-3)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*81}=\frac{0-18\sqrt{3}}{162} =-\frac{18\sqrt{3}}{162} =-\frac{\sqrt{3}}{9} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*81}=\frac{0+18\sqrt{3}}{162} =\frac{18\sqrt{3}}{162} =\frac{\sqrt{3}}{9} $
| 2x²+7x-90=0 | | x^2+9=2x^2-16 | | x^2+9=2x2-16 | | -3(3x+4)-x=15x | | x-5/x=0.4 | | 4z+10=6z | | X/2+x/3+x/5=12 | | 2(2p-6)=8 | | -2d=8-3d | | 27-3x=20-3x | | 7m=43.25 | | 4h-6=7h | | -n^2=-17n | | 1.25m=43.25 | | 50+x/2=35 | | 3x^2-24x+243=0 | | -3p=-7-2p | | F(-2)=5x-11 | | 13p–4=61 | | 2y-3/4-(3y-5)/2=y+3/4 | | 18+24÷=2g | | 3/10s=6(1/5) | | (y-5)^2=82 | | X(2x-13)=3x-30 | | 256x-99=-256x100-(-256)x | | 5(3x-2)=12x+6 | | 2a-8=6a+20 | | 4x+3x/12=1 | | 7x-9=12* | | 2m²+5m+2=0 | | x+x+14=122 | | n^2=-20n |